

AN OFF-AXIS ZONE-PLATE MONOCHROMATOR FOR HIGH POWER UNDULATOR RADIATION

M. R. Howells *

P. Charalambous %

H. He *

S. Marcesini *

J. C. H. Spence *#

^{*}Advanced Light Source, Lawrence Berkeley National Laboratory

^{*}Dept. of Physics, Arizona State University

[%]King's College London

ALS BEAM LINE 9.0.1: COHERENT OPTICS

BEAM LINE SIDE VIEW (NOT TO SCALE)

RATIONALE:

- Experiments are to be done at 588 eV in undulator 3rd harmonic
- Beam is a pink undulator beam with significant power
- Be window is 0.8 mm square which defines the beam size
- Some users require pink beam so monochromator must be retractable
- Resolving power of 800-1000 is required (compared to 100 for the pink beam)

ZONE-PLATE MONOCHROMATOR LAYOUT

Zone plate diameter D with pinhole diameter $d \implies$ resolving power D/2d

ZONE-PLATE OPTICS

- Zone plate nominal operating energy = 600 eV
- Focal length = 0.874 m
- Vertical demagnification = 25.7
- X-ray vertical spot sizes:
 - Geometrical image size = $2.3 \mu m$
 - Diffraction size = $2.3 \mu m$
 - Combined = $3.3 \mu m$
- Resolving power (based on combined spot size) = 802
- Number of zone plate periods in segment = 1000

ZONE-PLATE STRUCTURE

ONLY ROUGHLY TO SCALE

ZONE PLATE EFFICIENCY FOR VARIOUS MATERIALS

EFFICIENCY OF ZONE PLATE ELEMENTS

UNDULATOR SOURCE CHARACTERISTICS

Power density from a 3° nickel mirror, and a 0.5 micron B window

THERMAL ANALYSIS: THEORY

The Fourier equation for heat flow in 2 - D is

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = -\frac{Q}{kt}$$
 abs power/unit area
 k =conductivity, t =thickness

For a window $a \times b$ with T = 0 at the edges and uniform illumination (Q = constant)

$$T(x,y) = \frac{16Q}{\pi^{4}kt} \prod_{\substack{m=1 \ n=1 \\ m,n \ odd}} \frac{1}{mn} \frac{\sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}}{\frac{m^{2}}{a^{2}} + \frac{n^{2}}{b^{2}}}$$

For a square window the double sum

becomes a universal function $S(\frac{x}{a}, \frac{y}{a})$ with a

maximum $S(\frac{1}{2}, \frac{1}{2}) = 0.448$ at the center so

$$T_{\text{max}} = 7.17 \frac{Qa^2}{\pi^4 k t}$$

POWER ABSORPTION BY THE ZONE PLATE

Thermal behavior for actual zone plate parameters: Si_3N_4 thickness = 0.55 µm (phase shift at 600 eV) Al thickness = 0.5 µm

• Arriving pink-beam power density:

- $n=1: 0.006 \text{ W/mm}^2$

 $- n=3: 0.319 \text{ W/mm}^2$

- n=5: 0.043 W/mm²

- Deposited power density = 0.236 W/mm²
- Calculated center temperature at maximum power load = 80°C relative to the frame as zero
- Normally increasing the thickness of an xray window does not improve the power balance between deposition and removal
- But if there is an absorber *other than the* window (in this case the zone-plate rings) then a thickness increase can be beneficial

SOFT-X-RAY DIFFRACTION EXPERIMENT

ZONE PLATE POSITIVE-ORDER SPECTRUM

Peak width contributions

• Diffraction: 2.3 µm

• Geometrical image: 2.3 µm

• Source bandwidth:20 µm

• Slit size: 25 μm

• Defocus: 90 μm

• Overall calculated value: 96 µm

• Measured value: 110 μm

IMPROVED DATA FROM SMALL-WINDOW SAMPLE *****

- 30 nm gold balls 588 eV
- 1.77x1.77 µm window from window diffraction pattern

- Smaller beam stop
- No merging of data sets
- Good statistics
- Expecting that this will reconstruct by Fienup with no trouble if not we plan to try the "binary-object" constraint
- Fine and coarse texture gross spacings
- Hexagonal shape from "raft" shape